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Segmentation of genomic DNA through entropic divergence: Power laws and scaling
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Genomic DNA is fragmented into segments using the Jensen-Shannon divergence. Use of this criterion
results in the fragments beirmgntropically homogeneous within a predefined level of statistical significance.
Application of this procedure is made to complete genomes of organisms from archaebacteria, eubacteria, and
eukaryotes. The distribution of fragment lengths in bacterial and primitive eukaryotic DNAs shows two distinct
regimes of power-law scaling. The characteristic length separating these two regimes appears to be an intrinsic
property of the sequence rather than a finite-size artifact, and is independent of the significance level used in
segmenting a given genome. Fragment length distributions obtained in the segmentation of the genomes of
more highly evolved eukaryotes do not have such distinct regimes of power-law behavior.
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[. INTRODUCTION In the present paper we use the Jensen-Shannon entropic
divergence[5,7] to fragment several entire genomes. Our

With the genomes of a number of organisms being commotivation is to examine the properties of the segmentation
pletely sequenced now, it has become possible to apply procedure, and to examine the statistical properties of the
variety of mathematical and statistical tools to analyze DNAsegments themselves. One feature that we wish to explore is
sequences in order to study various features and underlyinghether the fragments obtained by entropic segmentation
patterns. DNA, for the purpose of such analysis, is typicallyhave evidence of scale invariance; numerous examples of
considered as a symbolic string of lengirbases, the bases similar processes appear to be scale invarfds;14. In-
being the nucleotides denotedl T, G, and C. The se-  deed, physical fragmentation also leads to a mass distribu-
quences are very heterogenous, typically havinm@saic  tjon, which may be fractdl15,16].
structure[1-4]. This is a consequence both of function— A complementary direction that has been pursued exten-
different parts of the DNA have different biological jyely in understanding DNA organization is the examination
actions—and history—different parts of a genomic DNA f |ong-range correlations in sequences. A number of studies
evolved at different times in different environments. Thus thenaye found evidencéwith varying levels of certaintyfor
base composition of DNA is nonuniform along the chain|gng.range fractal correlatiorfd—5,17—27 although this is
with both biochemical and physical consequences; nuclépoth controversial, and in the end, apparently of questionable
otide densities and purine-pyrimidiné (or G andC or T)  pjglogical significancé26—29. Both noncoding and coding
ratio, etc., differ significantly in different portions of a DNA sequences have been seen to give some evidence of power-
seéquence. o law correlationg4,21].

This mosaic organization has been the focus of a number | the following section of this paper, we briefly describe
of studies that attempt to delineate the different functionalhe segmentation procedui®, 7,8, as well as the different
parts of a DNA sequence based on some physical or stalislipethods of analysis that we have employed. Section Ill con-
cal measures. Through this process, generally termed “Ségains the results for the segmentation of the five genomes
mentation,” the aim is to find mutually distinctive portions of sy died here. These include species from the three kingdoms
the DNA, which are, however, homogenous with respect to &ommonly used to classify life on earth, namely, archaebac-
given criterion. A number of different criteria can therefore terja, eubacteria, and eukaryota. In addition to the usual four-
be used to segment DN/5—10. For instance, the Shannon |etter alphabet usually used to treat DNA as a symbolic
entropy[11] appears useful both in describing the statisticalstring, there are alternate encoding protocols, ranging from a
properties of DNA sequences and in having some correlatiogyo.etter (purine-pyrimidine codgto a 12-letter(frame po-
with biological aspects of the DNA. Thus some studies havejtion specifig alphabet. Results for the distributions using
used an entropic measure, tfiensen-Shannodivergence the 12-letter alphabet are also presented in Sec. Ill. The pa-

[5-8,13 as a quantitative criterion for segmentation, the in-per concludes with a discussion and summary in Sec. IV.
tention being to break a given DNA string into substrings

such that the intrasubstring entropic variation is small, while
the intersubstring entropic variation is large. Il. SEGMENTATION PROCEDURE

The segmentation of a genomic sequence is accomplished
*Present address: School of Biology, Georgia Institute of Technolby the application of entropic measure, Jensen-Shannon di-
ogy, Atlanta, GA 30332. vergencd 11]. Given two symbolic sequences built from an
"Email address: rama@vsnl.com alphabet ok symbols, the Jensen-Shannon divergence
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FIG. 1. The patch length distributidi{l) of homogeneous seg- FIG. 2. As in Fig. 1, for the bacteriur@ampylobacter jejuni
ments obtained by segmenting complete genomeheffmoplasma
acidophilum represented by four-symbol alphab&tT,C,G of Smax X) = Prold Jpa=x}. (€)

bases, at 99%, 95%, 90%, and 85% levels of statistical significanc%\n approximate analytic expression for the probability dis-
The genomic sequence has been segmented using a recursive Sﬁ% )
ution of J,,4 has been found7,8],

mentation method as described in the text. Each distribution from

below has been separated by a decade for cldhty.denotes base Smad X)=[F,(82N (In 2)X)]Neﬂ' (4)
pairs)
whereF, is the y? distribution function withy=(k—1)(m
n® n® —1) degrees of freedong is a scale factor largely indepen-
IFD,FO)=H(F)~  HIFD) = H(F®) (1)  dent of N andk and for eactk, Nes=alN+b (a,b are

constants The values ofa, b, and 8 are obtained from
, . . Monte Carlo simulations by fitting the empirical distributions
is a measure of the compositional difference between themq the above expressidi, g].
Here n® and FO={t{ M . 1} i=12 are the A sequence is segmented at a preassigsigdificance
lengths and relative frequency vectors, respectively, of thgeyel g as follows. Ifs,,,, determined as discussed above,
two sequences. By concatenating the sequences to getegceedss,, the sequence is segmented at this point. The
single sequence of length=n™+n( with 7 the corre-  procedure is continued recursively for each of the two result-
sponding frequency vector, the corresponding Shannon efing segments. It is necessary to ensure that at each stage, the
tropy Is resulting subsequences maintain their distinctieis-a-vis
‘ the Jensen-Shannon divergenttem their neighbors formed
at the previous segmentation steps. The process is terminated
H(F)= _;1 filog, fi. (2) Wwhenall segments thus obtained either hayg,<s,, or if a
possible partition will lead to segments that are not compo-

J may be generalized to study the divergence amorge-  Sitionally distinct from their neighbors.

guences; the process of segmentation suggestsi dhcal-
culates the difference fan=2 sequences.

The procedure to segment a given sequence into homoge- The genomic DNA sequences studied here are represented
neous subsequenc¢domains or patchgss as follows. A by the usual four-symbol alphabefA,T,C,G} where
sequence of lengtN is partitioned into two subsequences of A, T,C,G represent the bases adenine, thymine, cytosine,
lengthsn™® andn®=N-n), respectively, by varying the guanine respectively, and a 12-symbol alphabet
partition, namely, all choices af(’) so as to maximize the {A; .\ T;,C;,G;}, i=1,2,3, where the subscripts indicate the
divergencel. This procedure is carried out recursively. positions of bases within a codd®]. The representative

To determine whether the partitioning point that maxi- genomes taken from the GenBaf®0] are Thermoplasma
mizesJ is statistically significant or not, two potential sub- acidophilum(archaebacteria, 1.56 MhpCampylobacter je-
segments are compared with those from random fluctuationfuni (eubacteria, 1.64 MpSaccharomyces cerevisiabro-

If Jmaxis the maximum value aJ among all possible cutting mosome 1V (eukaryota, 1.53 Mbyp Arabidopsis thaliana
points, the statistical significance of this maximum is deterchromosome ll(eukaryota, 1.5 Mbpand human chromo-
mined by obtaining the probability of getting this value or some 22(eukaryota, 1.52 Mbp where bp means base pairs.
less in a random sequence. The significance level is thuShe chromosomes oh. thalianaand human are very long
defined as and incomplete; we take a long string of 1.5 Mbp, which is

Ill. APPLICATION AND RESULTS
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FIG. 3. As in Fig. 1, forSaccharomyces cerevisiahromosome
V.

completely specified for A. thaliana and a contig
(gi|1088002&ef|[NT_011522.1) of human chromosome
22.

Segmentation, as discussed in the preceding section w
carried out. In order to search for scaling laws in such
fragmentation, we observe the probability distribution of
segments obtained for different genomes. We denote(by
the number of segments of lengthand consider the distri-
bution

o)

F()=2>

I"=1

n(I’)~Jllln(l’)dl’, (5
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FIG. 4. As in Fig. 1, forArabidopsis thalianachromosome
and a human chromosome 22 contig.

karyotic and lies in the range of£1300-1500 bp. Thus,
f(l)ocl 4%, i=1,2, a, is the exponent below the character-
istic scale andx, above. The exponents are obtained from a
fit to the data, andv,;<a,. The values ofw; and a, from

ﬁgs. 1-3 are given in Table I. The segment distributions of

%h

igher eukaryotes, for exampla, thalianaand humar(see
Fig. 4) appear to be smooth and are conspicuous by the ab-
sence of a characteristic scale.

This agrees with recent results obtained using the autocor-
relation function[31]. For prokaryotes and early eukaryotes
the autocorrelation function usually presents a characteristic
length scaldaround a few kilobase¢$eyond which it essen-
tially drops to zero, while for higher eukaryotes and espe-
cially for human DNA, the autocorrelation function has a

which corresponds to the number of segments with |engﬂpower-law behavior extending in some cases to more than 5

greater than or equal to If the distribution of lengths fol-
lows a power law, namelyn(l)e<l~<, F(l) also follows a
power law, with exponent % «.

Figures 1—4 shovi(1)=1"1F(l) for the above genomes

decades, indicating the absence of a characteristic length
scale. This last result has been also obtained for human chro-
mosome 22 using mutual informati¢@2].

Distribution profiles for the genomes encoded in 12-

using the four-symbol alphabet, segmented at four differentYMPO! @lphabet and segmented at 99%, 95%, and 90% lev-

significance level$99%, 95%, 90%, and 85p6Note that,
for k=4 andm=2, the number of degrees of freedom
=3, and from Monte Carlo simulationa=2.44, b=
—6.15, andB=0.79[7]. The number of segments obtained
at 99% significance level are 516 for acidophilum 654 for

C. jejuni, 584 for S. cerevisiag1122 for A. thaliang and
1360 for human chromosome 22 contig. At a given signifi-

els of significance are shown in Figs(ab-5(d). For this
code, the number of degrees of freedonvis9 [7,8] and
a,b,B are 2.34;-3.69,0.84, respectively. The distributions
show

TABLE I. The scaling exponents; and«, observed below and
above the characteristic scale that partitions the patch length distri-
bution into two power-law regimes for the genomes of three differ-

cance level, a heterogeneous DNA sequence yields more segpt representative organisms. The scaling exponents given corre-

ments than a relatively homogeneous ¢6¢/]. As may be

spond to the genomic sequences coded#¥4 symbol alphabet

expected, therefore, the human chromosome has larger nurand at four different significance levels as described in the text.

ber of segments than a bacterial sequence of comparabie

length. Lowering the significance level increases the number 99%

95% 90% 85%

of segments obtained for an organism; similar trends ob-

. . Genome
served as above for the five species can also be observed_at

ay a

ay ap ay an ay an

2.76
2.81
2.37

other significance levels. T. acidophilum 1.12
Patch length distributions in Figs. 1-3 show a charactere. jejuni 1.1
istic scale separating two clear regimes of power laws. Thi%. cerevisiae 1.18

118 285 1.21 3.27 1.23 3.48
118 31 124 31 128 321
125 265 13 277 136 2.86

scale is nearly constant from archaeal genome to early eu
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FIG. 5. The patch length distributidi{l) as in Fig. 1 of five genomes, using a 12-symbol alphabet that takes into account both the base
and the codon positiofA; ,T; ,C; ,G;}, i=1,2,3 (see text The segmentation has been done at 99%, 95%, and 90% levels of statistical
significance.

similar trends in bending profiles as for the four-symbol al-higher significance level results in reduced segmentation and
phabet, though the characteristic scales now show differthus larger patch sizes, while a lower significance level
ences from archaea to early eukaryotes; see Figs-5c). causes larger patches to segment further. Even when only
The characteristic scale far. acidophilumand C. jejuniis  three-fourths or half of the genome is used, two scaling re-
~800 bp and forS. cerevisiae=1100 bp. We find the two gimes result with the same characteristic length, as shown in
scaling regimes to be most clearly distinguished at 99% sigFig. 6 for T. acidophilum(90% significance level

nificance level. Segmentation of a nucleotide sequence coded

in 12-symbol alphabet delineates the coding and noncoding TABLE Il. The scaling exponents;; and a, observed below
regions; we find these characteristic lengths almost the samand above the characteristic scale for the genomes of three different
as the average size of coding segments of the respective gepresentative organisms. The scaling exponents given correspond
nomes. The power-law exponents and «, are given in  to the genomic sequences codedkin 12 symbol alphabet and at
Table II. three different significance levels as described in the text.

The characteristic length, which is observed as separating

the two regimes of the power-law behavior does not appear 99% 95% 90%

to be an artifact either of the statistical significance level or Genome o o o o o o

of finite size(length. This is evident from our results shown ! 2 ! 2 ! 2
for a wide range of significance levels in Figs. 1-3 and FigsT. acidophilum  1.09 4.12 1.15 428 119 44
5(a)—5(c). The scaling exponents on either side of the char. jejuni 1.08 413 113 449 117 44
acteristic length vary with the significance level used to segs. cerevisiae 122 381 126 3838 131 4.14

ment a genome, but the length itself remains unchanged. A
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Whole. ) _ _ _
- Unraveling the history of a given genome is a complex

task, and one that needs a variety of different approaches.
Identification of the different structural features within the
DNA—the exons and introns, repetitive DNA, telomeres,
isochores, for instance, is one objective. However, the DNA
of any organism itself has a complicated evolutionary history
with a variety of different selection pressures acting on it at
different times. To uncover this aspect of DNA evolution, it
may be essential to go beyond an analysis of the functional
parts of the DNA, and segmentation study, like the one pre-
sented in this paper, is one approach to understand the ge-
nome organization.

The principle behind segmentation is simple: break up a
I (bp) complex object into its “constituent” parts, and thereby at-

tempt to understand how the organization comes about in the
FIG. 6. The patch length distributiof(l) of Thermoplasma fj st place.

acidophilumusing four-symbol alphabet for half, three-fourth, and This is the motivation, for instance, in studying the frag-

whole genome size at 90% significance level. mentation of physical objects—rocks or gypsum molds of
different shapes, for instance. Distribution profiles of masses
Note that the present sets of segment lengths of bacteriaf fragments so obtained have been seen to follow a power-
and primitive eukaryotic genomes do not appear to followlaw behaviol{16]. There is, however, a characteristic size so
the lognormal distribution that arises in the Kolmogorovthat the actual distribution of fragment massefollows the
theory of physical fragmentatidd5]. Shown in Fig. 7a) are  law am™ exp(—m/my), wheremy is the characteristic finite-
data from fragmentingl. acidophilumat 90% significance size cutoff mass, and andb are constants. Belown, the
level (recall that the patch lengthis lognormally distributed  distribution is close to a power-law behavior with exponent
if In | is normally distributegl The corresponding distribution b. Physical fragmentation is dictated by the breaking of
of the human sequences superficially seems somewhat closgtrong bonds between molecules that determine the structure
to the lognormal distributiorfsee Fig. )] although we and tensile strengths of solids; the mass distribution follows
have found it possible to fit the distributions for humanfor a power law for the entire range of masgesnus the cut-
thaliana to the lognormal probability density function only off). Such fragments are held together in a solid by the same
over limited ranges. It has not been possible to fit the distritype of adhesion so that a smaller fragment breaks in a simi-
butions to the lognormal form over the entire range using dar manner as a larger one.
single set of fitting parameters. DNA sequences are heterogeneous at various levels of
description and thus the fragmentation of DNA into entropi-
cally homogeneous segments is, in principle, very different.

T. acidophilum

hree fourth .

108
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I T. acidophilum 2) We have studied the segment length distributions for the ge-
2 80 [ ] nomic DNAs of representative organisms spanning the three
& 60 classified kingdoms. The segments that a given sequence is
> i divided into are such that within a given domain, the com-
O 40 . . . .
C . position is uniform(in terms of the Shannon entropythus
20 1 these domains could reflect the evolution of a given genome.
0 - Based on this premise, one would expect that an organism
0 2.5 further along the evolutionary tree will have a more complex
550 genomic organization.
; b)} This is borne out in our studies: for bacterial genomes, the
-.200 E domains appear to have a power-law distribution with evi-
[&] F p . . .
S 150 F E dence of two separate regimes of scaling behavior. Although
2 : ] we have analyzed all available complete genomes of archae-
£100 ¢ E bacteria and eubacteria, only representative data have been
50 F 3 presented here and compared with chromosome wide data
: L . . ] for three eukaryote@gain, not all the examples analyzed are
0 0 2 4 6 8 10 presented hejeOur results, which are consistent across the

In I (bp) kingdoms, show two regimes of power-law scaling in the
bacterial genomes as well as primitive eukaryotes like yeast.

FIG. 7. Distribution of the(natura) logarithm of the patch Application of the segmentation algorithm to other bacterial
lengths of(a) T. acidophilumand (b) human at 90% significance genomes shows similar features, displaying the general frac-
level. tal organization of nucleotides that make up such genomes.
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This is in contrast to the segment length distribution ofrange correlations observed in human DNZ®]. The frag-
highly evolved eukaryotes, such as human or plant; here thments resulting from the segmentation algorithm carry the
distribution shows a smooth transition across the entire rangenprint of these different processes and it may be anticipated
of segment lengths, thus lacking distinct characteristic scaleshat the scaling features would be more complex than for
The nucleotide composition of higher eukaryotes is verybacterial sequences.

complex; this is attributed to the abundance of noncoding
sequences or introns in DNA sequences of such organisms.
Of as yet undetermined function, noncoding DNA may well
be crucial vis-a-vis evolution. Such regions are more prone We thank Mark Borodovsky for comments on the manu-
to alteration by different evolutionary processes, e.g., dupliscript. R.K.A. and R.R. were supported by a grant from the
cation, mutation, insertion, deletion, etc. For example, cerDepartment of BioTechnology, India. P.B.G. was partially
tain repetitive elementgclosely related to such procespges supported by Grant No. BIO99-0651-C0O2-01 from the Span-
have been recently identified as responsible for the longish Government.
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